
INDIAN STATISTICAL INSTITUTE
Probability Theory II: B. Math (Hons.) I

Semester II, Academic Year 2018-19
Final Exam (Total Marks: 50)

Date: 02/05/2019 Time: 10:00 am - 1:00 pm

• Please write your name on top of your answer-script.

• Show all your works and write explanations when needed. If you
are using a result stated and/or proved in class, please quote it
correctly.

• You are NOT allowed to use class notes, books, homework solu-
tions, list of theorems, formulas etc.

1. A continuous random vector (X, Y ) has a joint probability den-
sity function given by

fX,Y (x, y) =

 2/3 if x > 0, y > 0, x+ y < 1,
c if x < 1, y < 1, x+ y > 1,
0 otherwise.

(a) (2 marks) Find c.

(b) (4 marks) Compute the conditional probability density func-
tion of Y given X.

(c) (4 marks) Calculate E(Y |X).

2. (10 marks) Suppose (X1, X2, X3, X4, X5) ∼ D(α1, α2, α3, α4, ; β)
(the notation is as used in the class), where α1, α2, α3, α4, β are
positive parameters. Compute, with full justification, a joint
probability density function of (X2 +X4, X5, X3).

3. (10 marks) Suppose that X is a random variable with finite
mean and ϕ(t) is its characteristic function. Show that ϕ(t)
is differentiable and with proper justification, express E(X) in
terms of the derivative of ϕ(t).
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4. (10 marks) Fix a positive integer n > 1. Let X1, X2, . . . , Xn be
i.i.d. standard normal random variables. For k = 1, . . . , n− 1,
define

Yk =
1√

k(k + 1)

( k∑
i=1

Xi − kXk+1

)
.

Then show that Y1, . . . , Yn−1 are also i.i.d. standard normal
random variables.

5. (10 marks) Suppose it is given that a sequence of random vari-
ables {Xn} converges in distribution. Show that for every
ε ∈ (0, 1), there exist a, b ∈ R such that

P
(
Xn ∈ (a, b]

)
≥ 1− ε

for all n ≥ 1.
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